Thursday 11 February 2016

A Quixotic Project

Dr. Thorne of Caltech and Dr. Weiss of M.I.T. first met in 1975, Dr. Weiss said, when they had to share a hotel room during a meeting in Washington. Dr. Thorne was already a renowned black-hole theorist, but he was looking for new experimental territory to conquer. They stayed up all night talking about how to test general relativity and debating how best to search for gravitational waves.
Dr. Thorne then recruited Dr. Drever, a gifted experimentalist from the University of Glasgow, to start a gravitational wave program at Caltech. Dr. Drever wanted to use light — laser beams bouncing between precisely positioned mirrors — to detect the squeeze and stretch of a passing wave.
Dr. Weiss tried to mount a similar effort at M.I.T., also using the laser approach, but at the time, black holes were not in fashion there. (Things are better now, he said.)
Continue reading the main story

Sign Up for the Science Times Newsletter

Every week, we'll bring you stories that capture the wonders of the human body, nature and the cosmos. Coming soon.
The technological odds were against both efforts. The researchers calculated that a typical gravitational wave from out in space would change the distance between a pair of mirrors by an almost imperceptible amount: one part in a billion trillion. Dr. Weiss recalled that when he explained the experiment to his potential funders at the National Science Foundation, “everybody thought we were out of our minds.”
In 1984, to the annoyance of Dr. Drever and the relief of Dr. Weiss, the National Science Foundation ordered the two teams to merge. Dr. Thorne found himself in the dual roles of evangelist for the field of gravitational waves and broker for experimental disagreements.
Progress was slow until the three physicists were replaced in 1987 by a single director as part of the price of going forward.
The first version of the experiment, known as Initial LIGO, started in 2000 and ran for 10 years, mostly to show that it could work on the scale needed. There are two detectors: one in Hanford, Wash., the other in Livingston, La. Hunters once shot up the outside of one of the antenna arms in Louisiana, and a truck crashed into one of the arms in Hanford. In neither case was the experiment damaged.
Over the last five years, the entire system was rebuilt to increase its sensitivity to the point where the team could realistically expect to hear something.
LIGO’s antennas are L-shaped, with perpendicular arms 2.5 miles long. Inside each arm, cocooned in layers of steel and concrete, runs the world’s largest bottle of nothing, a vacuum chamber a couple of feet wide containing 2.5 million gallons of empty space. At the end of each arm are mirrors hanging by glass threads, isolated from the bumps and shrieks of the environment better than any Rolls-Royce ever conceived.
Thus coddled, the lasers in the present incarnation, known as Advanced LIGO, can detect changes in the length of one of those arms as small as one ten-thousandth the diameter of a proton — a subatomic particle too small to be seen by even the most powerful microscopes — as a gravitational wave sweeps through.
Continue reading the main story

An Earthling’s Guide to Black Holes

Welcome to the place of no return — a region in space where the gravitational pull is so strong that not even light can escape it. This is a black hole.
Even with such extreme sensitivity, only the most massive and violent events out there would be loud enough to make the detectors ring. LIGO was designed to catch collisions of neutron stars, which can produce the violent flashes known as gamma ray bursts.
As they got closer together, these neutron stars would swing around faster and faster, hundreds of times a second, vibrating space-time geometry with a rising tone that would be audible in LIGO’s vacuum-tube “sweet spot.”
Black holes, the even-more-extreme remains of dead stars, could be expected to do the same, but nobody knew if they existed in pairs or how often they might collide. If they did, however, the waves from the collision would be far louder and lower pitched than those from neutron stars.
Dr. Thorne and others long thought these would be the first waves to be heard by LIGO. But even he did not expect it would happen so quickly.

‘It Was Waving Hello’

On Sept. 14, the system had barely finished being calibrated and was in what is called an engineering run at 4 a.m. when a loud signal came through at the Livingston site. “Data was streaming, and then ‘bam,’ ” recalled David Reitze, a Caltech professor who is the director of the LIGO Laboratory, the group that built and runs the detectors.
Seven milliseconds later, the signal hit the Hanford site. LIGO scientists later determined that the likelihood of such signals landing simultaneously by pure chance was vanishingly small. Nobody was awake, but computers tagged the event.
Continue reading the main story

Graphic

What Is General Relativity?

Einstein presented his general theory of relativity 100 years ago this month.
OPEN Graphic
Dr. Reitze was on a plane to Louisiana the next day. Dr. Weiss, on vacation in Maine, found out when he checked in by computer that morning. “It was waving hello,” he said. “It was amazing. The signal was so big, I didn’t believe it.”
The frequency of the chirp was too low for neutron stars, the physicists knew. Detailed analysis of its form told a tale of Brobdingnagian activities in a far corner of the universe: the last waltz of a pair of black holes shockingly larger than astrophysicists had been expecting.
One of them was 36 times as massive as the sun, the other 29. As they approached the end, at half the speed of light, they were circling each other 250 times a second.
And then the ringing stopped as the two holes coalesced into a single black hole, a trapdoor in space with the equivalent mass of 62 suns. All in a fifth of a second, Earth time.
Dr. Weiss said you could reproduce the chirp by running your fingernails across the keys of a piano from the low end to middle C.
Lost in the transformation was three solar masses’ worth of energy, vaporized into gravitational waves in an unseen and barely felt apocalypse. As visible light, that energy would be equivalent to a billion trillion suns.
And yet it moved the LIGO mirrors only four one-thousandths of the diameter of a proton.
CLICK 

No comments:

Post a Comment